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ABSTRACT
In this paper, a modified one-stage multiple comparison procedures
with a control for exponential location parameters based on the dou-
bly censored sample under heteroscedasticity is proposed. A simula-
tion study is done and the results show that the proposed procedures
have shorter confidence lengthwith coverage probabilities closer to the
nominal ones compared with the one proposed in Wu (2017). At last,
an example of comparing the duration of remission for four drugs as
the treatment of leukemia is given to demonstrate the proposed proce-
dures.

1. Introduction

The field of ranking and selection for normal distributions has been extensively studies by
Bechhofer (1954), Gupta (1956) and their followers. In this paper, let π1, . . . , πk denote
k (≥ 2) independent two-parameter exponential populations, where πk is a control popu-
lation. The random sample from population πi follows an exponential distribution denoted
as E(θi, σi), i = 1, . . . , k, where θ1, . . . , θk are unknown location parameters and so-called
the threshold values or “guaranteed time” parameters in reliability and engineering and
σ1, . . . , σk are unknown and possibly unequal scale parameters and are referred as the mean
effective duration in addition to θi, i = 1, . . . , k. There are many applications of exponential
distribution in the analysis of reliability and the life test experiments. See for example,
Johnson, Kotz, and Balakrishnan (1994), Bain and Engelhardt (1991), Lawless and Singhal
(1980) and Zelen (1966). When k scale parameters are equal, i.e. σ1 = · · · = σk = σ , Ng,
Lam, and Chen (1993) proposed multiple comparison procedures with the control. When
k scale parameters are unknown and possibly unequal, Lam and Ng (1990) proposed the
design-oriented two-stage multiple comparison procedures with the control under het-
eroscedasticity. When the additional sample at the second stage may not be available due
to the lack of experimental budget or other uncontrollable factors in some experiments,
one-stage multiple comparison procedures with a control are considered instead. Wu, Lin,
and Yu (2010) proposed the one-sample multiple comparison procedures with a control
using Lam’s (1987, 1988) technique for complete sample. When the first r lifetimes and the
last s lifetimes out of n inspected items are missing, the doubly Type II censoring is arisen.
In this paper, we proposed a modified one-stage multiple comparison procedures based on
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doubly censored sample in Section Section 2. In Section 3, a simulation comparison is done
between the proposed procedures and the ones in Wu (2017). In Section 4, an example of
duration of remission by four drugs used in the treatment of leukemia is used to illustrate the
proposed procedures. Finally, our conclusions are summarized in Section 5.

2. Modified one stagemultiple comparison procedures based on doubly
censored sample

In life testing experiments, the lifetimes of all products on the life test may not be completely
observed due to the limitation of time, budgets ormaterial resources. If the first r lifetimes and
the last s lifetimes out of n inspected products are missing, then we can only obtain the doubly
Type II censored sample denoted asXi(r+1), . . . ,Xi(n−s) from the ithpopulationπi, i= 1 , . . . , k.
Let the (r+1)th ordered observation from the ith population denoted asYi = Xi(r+1). Consider
the pivotal quantityWi = Ti/Ui, where Ti = Xi(r+1)−θi

σi
is the (r+1)th order statistic of a stan-

dard exponential distribution andUi = 2νSi
σi

follows a chi-squared distributionwith 2ν degrees

of freedom and ν = n − r − s − 1, where Si = 2(s+1)(Xi(n−s)−Yi )+
∑n−s−1

j=r+2 (Xi( j)−Yi )

ν
, i = 1, . . . , k.

FromWu (2017), the p.d.f. and c.d.f. ofWi are obtained as

f (wi) = 2 ν n !
r !(n − r − 1) !

r∑
j=0

(
r
j

)
(−1) j(1 + (2n − 2r + 2 j)wi)

−(ν+1) and

F(wi) = 1 − n !
r !(n − r − 1) !

r∑
j=0

(
r
j

)
(−1) j

(1 + (2n − 2r + 2 j)wi)
−ν

n − r + j
, wi > 0, i = 1, . . . , k.

Let F∗
n,r,ν (P∗) be the 100Pth percentile of distribution ofWi, i= 1 ,. . . , k and then F∗

n,r,ν (P∗)
is the solution of the following equation

F(wi) = 1 − n !
r !(n − r − 1) !

r∑
j=0

(
r
j

)
(−1) j

(1 + (2n − 2r + 2 j)wi)
−ν

n − r + j
= P∗. (1)

The 100Pth percentile of distribution of Wi can be solved numerically. Let c∗ =
maxi=1,...,k 2νSi. Using the inequality given in Lam (1987, 1988), Wu (2017) proposed the
one-sided and two-sided confidence intervals summarized in the following Theorem.

Theorem 1. For a given 0 < P∗ < 1, we have
(a) P(θi − θk ≤ Yi −Yk + c∗s∗U , i = 1, . . . , k − 1) ≥ P∗ if s∗U = F∗

n,r,ν (P∗), where F∗
n,r,ν

(P∗) is the solution of equation (1).
Thus, (−∞,Yi −Yk + c∗s∗U ) is a set of upper confidence intervals for θi − θk with confi-
dence coefficient P∗, i = 1, . . . , k − 1.

(b) P(θi − θk ≥ Yi −Yk − c∗s∗L, i = 1, . . . , k − 1) ≥ P∗ if s∗L = F∗
n,r,ν (P

∗ 1
k−1 ), where F∗

n,r,ν

(P∗ 1
k−1 ) is the solution of equation (1)by replacing P∗ by P∗ 1

k−1 .
Thus, (Yi −Yk − c∗s∗L, ∞) is a set of lower confidence intervals for θi − θk with confi-
dence coefficient P∗, i = 1, . . . , k − 1.

(c) P(Yi −Yk − c∗s∗t ≤ θi − θk ≤ Yi −Yk + c∗s∗t , i = 1, . . . , k − 1) ≥ P∗ if s∗t = F∗
n,r,ν

(P∗ 1
k ).

Thus, (Yi −Yk ± c∗s∗t ) is a set of simultaneous two-sided confidence intervals for θi − θk
with confidence coefficient P∗, i = 1, . . . , k − 1.
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The critical values s∗U , s∗L and s∗t can be obtained by solving equation (1) by replacing P∗

by P∗ , P∗ 1
k−1 and P∗ 1

k respectively and the results are listed in Table 1 in Wu (2017) for
k = 3,4,6, n = 20,30,60, r = 1(1)3, s = 0(1)2 and P∗ = 0.90, 0.95. The confidence interval
length is L1 = 2c∗st , where c∗ = maxi=1,...,k 2νSi, s∗t = F∗

n,r,ν (P
∗ 1
k ) and s∗t = F∗

n,r,ν (P
∗ 1
k ) is the

100(P∗ 1
k )th percentile of the distribution ofWi, i = 1, . . . , k − 1. It can be seen that the value

c∗ is very crucial and is proportional to confidence interval length L1. To obtain shorter con-
fidence interval lengths and smaller coverage probabilities, the value of c∗ is changed appro-
priately to c∗i = maxl �=i,l=1,...,k 2νSl , ci = 2νSi for the simultaneous one-sided and two-sided
confidence intervals (SCI) for θi − θk, i = 1, . . . , k − 1 in the following theorem:

Theorem 2. For a given 0 < P∗ < 1, let c∗i = maxl �=i,l=1,...,k 2νSl , ci = 2νSi, and s∗U , s∗L and s∗t
are defined in Theorem 1, we have

(a) P(θi − θk ≤ Yi −Yk + c∗i s∗U , i = 1, . . . , k − 1) ≥ P∗. Thus, (−∞,Yi −Yk + c∗i s∗U ) is a
set of upper confidence intervals for θi − θk with confidence coefficient P∗, i = 1, . . . ,
k − 1.

(b) P(θi − θk ≥ Yi −Yk − cis∗L, i = 1, . . . , k − 1) ≥ P∗. Thus, (Yi −Yk − cis∗L, ∞) is a set
of lower confidence intervals for θi − θk with confidence coefficient P∗, i = 1, . . . , k − 1.

(c) P(Yi −Yk − cis∗t ≤ θi − θk ≤ Yi −Yk + c∗i s∗t , i = 1, . . . , k − 1) ≥ P∗.

Thus, (Yi −Yk − ci,Yi −Yk + c∗i s∗t ) is a set of simultaneous two-sided confidence intervals
for θi − θk with confidence coefficient P∗, i = 1, . . . , k − 1.

Proof of Theorem 2.
For (a), we have

P
(
θi − θk ≤ Yi −Yk + c∗i s

∗
U , i = 1, . . . , k − 1

)
= P

(
2νSiWl ≥ 2νSkWk − c∗i s

∗
U , i = 1, . . . , k − 1

)
≥ P

(
2νSiWi ≥ c∗iWk − c∗i s

∗
U , i = 1, . . . , k − 1

)
Table . Coverage probabilities based on the doubly censored sample under (σ1, σ2, σ3, σ4) =
(.,.,.,.).

k= , P∗ = . Lower upper two

m r s old new old new old new L L L/L

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .

k= , P∗ = . Lower upper two

m r s old new old new old new L L L/L

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
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since c∗i ≥ 2νSk,

≥ P
(
0 ≥ c∗iWk − c∗i s

∗
U , i = 1, . . . , k − 1

)
= P

(
Wk ≤ s∗U

)(
Cancelling c∗i

) = P∗.

Thenwe have s∗U is the 100Pth percentile of distribution ofWi and the proof is thus obtained.
For (b), we have

P
(
θi − θk ≥ Yi −Yk − cis∗L, i = 1, . . . , k − 1

)
= P

(
2νSkWk ≥ 2νSiWi − 2νSis∗L, i = 1, . . . , k − 1

)
≥ ES1,...,SkP

(
0 ≥ 2νSiWi − 2νSis∗L, i = 1, . . . , k − 1

)
(since 2νSiWi > 0)

= P
(
Wi ≤ s∗L, i = 1, . . . , k − 1

)
(Cancelling 2νSi) = P

(
Wi ≤ s∗L

)k−1 = P∗.

Solving the above equation, thenwe have s∗L = F∗
n,r,ν (P

∗ 1
k−1 ) and the proof is thus obtained.

For (c), combining (a) and (b), we have

P
(
Yi −Yk − cis∗t ≤ θi − θk ≤ Yi −Yk + c∗i s

∗
t , i = 1, . . . , k − 1

)
= ES1,...,SkP

(
2νSkWk ≥ 2νSiWi − 2νSis∗t

∩ 2 νSiWi ≥ c∗iWk − c∗i s
∗
t , i = 1, . . . , k − 1

)
≥ P

(
Wi ≤ s∗t , Wk ≤ s∗t , i = 1, . . . , k − 1

) = P(Wi ≤ s∗t )
k = P∗.

Solving the above equation, then we have s∗t = F∗
n,r,ν (P

∗ 1
k ) and the proof is thus

obtained. �
The modified procedures proposed in Theorem 2 is called the new method. Let L3 be the

average length of k-1 two-sided confidence intervals for θi − θk based on the new method,
then we have L3 = (

...c + c̄)s∗t , where
...c = ∑k−1

i=1 c
∗
i /(k − 1) and c̄ = ∑k−1

i=1 ci/(k − 1). The
expected length of L1 = 2c∗s∗t and L3 are given by EL1 = 2E(c∗)s∗t = 2E(maxi=1,...,k 2νSi)s∗t
and

EL3 = (E
...c + Ec̄)s∗t = (

∑k−1
i=1 E(maxl �=i,l=1,...,k 2νSl )/(k − 1) +∑k−1

i=1 E(2νSi)/(k − 1))
s∗t = ∑k−1

i=1 E(maxl �=i,l=1,...,k 2νSl )/(k − 1) s∗t + +σ̄ s∗t , where σ̄ = ∑k−1
i=1 σi/(k − 1). The

distribution of maxl �=i,l=1,...,k 2νSl/σi is given by (
∫ x
0

tν−1e−
t
2

�(ν)2ν dt )k−1. Then the expected value

of E(maxl �=i,l=1,...,k 2νSl ) is given by ηi = (k − 1)σi
∫∞
0 (

∫ x
0

tν−1e−
t
2

�(ν)2ν dt )
k−2

xν e−
x
2

�(ν)2ν dx. Then the
expected length for L3 is derived as EL3 = (η̄ + σ̄ )s∗t , where η̄ = ∑k−1

i=1 ηi/(k − 1).
Since max(2νSk,2νSi)<maxi=1,...,k 2νSi, the ratio of expected length of L3 over L1 must be

less than one and results in a more conservative coverage probability for procedures in Wu
(2017) (called the old procedures) than the proposed procedures (called the new procedures).

When the scale parameters are unequal and known, the unbiased estimator Si of σi is
replaced by σi throughout Theorem 2 and the statisticWi is replaced by the statistic Ti/(2ν)

which is r+1 order statistic of n i.i.d. standard exponential distribution having p.d.f given in
(1) divided by 2ν. Let c̃ = 2νσk, c̃i = 2νσi and then Theorem 2 is modified as the following
Theorem.

Theorem 3. Letc̃∗i = maxl �=i,l=1,...,k 2νσl , c̃i = 2νσi, ν = n − r − s − 1 and F2(r+1),2(n−r)(P∗)
be the right-tailed P∗ percentile of F distribution with parameters 2(r + 1) and 2(n − r). For a
given 0 < P∗ < 1, when the scale parameters are unequal and known, we have

(a) P(θi − θk ≤ Yi −Yk + c̃∗i sU , i = 1, . . . , k − 1) ≥ P∗

if sU = ln( r+1
n−r F2(r+1),2(n−r)(P∗) + 1)/(2ν).
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Thus, (−∞,Yi −Yk + c̃∗i sU ) is a set of upper confidence intervals for θi − θk with confi-
dence coefficient P∗, i = 1, . . . , k − 1.

(b) P(θi − θk ≥ Yi −Yk − c̃isL, i = 1, . . . , k − 1) ≥ P∗

if sL = ln( r+1
n−r F2(r+1),2(n−r)(P

∗ 1
k−1 ) + 1)/(2ν).

Thus, (Yi −Yk − c̃isL, ∞) is a set of lower confidence intervals for θi − θk with confidence
coefficient P∗, i = 1, . . . , k − 1.

(c) P(Yi −Yk − c̃ist ≤ θi − θk ≤ Yi −Yk + c̃∗i st , i = 1, . . . , k − 1) ≥ P∗

if st = ln( r+1
n−r F2(r+1),2(n−r)(P∗ 1

k ) + 1)/(2ν).
Thus, (Yi −Yk − c̃ist ,Yi −Yk + c̃∗i st ) is a set of simultaneous two-sided confidence inter-
vals for θi − θk with confidence coefficient P∗, i = 1, . . . , k − 1.

Proof. Similar to the proof of Theorem 2, theWi in Theorem 2 is replaced by Ti/(2ν) for this
proof. �

The critical values sU , sL and st are the P∗ , P∗ 1
k−1 and P∗ 1

k percentile of the distribution of
Ti/(2ν) and are derived in Wu (2017) and the critical values sU , sL and st are listed in Table 2
of Wu (2017) for k = 3,4,6, n = 20,30,60, r = 1(1)3,s = 0(1)2 and P∗ = 0.90, 0.95. Let L4
be the confidence length of the two-sided confidence intervals for θi − θk by the one-sample
procedure when the scale parameters are unequal and known, then we have L4 = (c̃ + c̄)st ,
where c̃ = ∑k−1

i=1 c̃
∗
i /(k − 1) and c̄ = ∑k−1

i=1 c̃i/(k − 1). Likewise, L4 is less than the confidence
length L4 = 4νst proposed in Theorem 4 of Wu (2017).

3. Simulation comparison

The difference between the proposed new procedures and the old procedures in Wu (2017)
is that the proposed procedures have shorter confidence lengths and better confidence cover-
age probabilities which are closer to the nominal confidence coefficients compared to the old
procedures. In order to demonstrate this difference, a simulation study is conducted to find
the lower, upper and two-sided confidence intervals for θi − θk, i = 1, . . . , k − 1 using two
procedures under P∗ = 0.90, 0.95,m= 20,30, (r,s)= (1,1),(2,1),(1,2) with various structures

Table . Coverage probabilities based on the doubly censored sample under (σ1, σ2, σ3, σ4) =
(.,.,.,.).

k= , P∗ = . Lower upper two

m r s old new old new old new L L L/L

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .

k= , P∗ = . Lower upper two

m r s old new old new old new L L L/L

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .

   . . . . . . . . .
  . . . . . . . . .
  . . . . . . . . .
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of scale parameters (σ1, σ2, σ3, σ4) = (1.0,1.0,1.0,1.0),(1.0,2.0,3.0,4.0) for k= 4 using 500,000
simulation runs in this section. The coverage probabilities of wo procedures and the confi-
dence lengths L1, L3 and the length ratio L3/L1 are listed in Tables 1–2.

From the simulation results, it can be seen that both of old procedures and new ones have
coverage probabilities higher than the nominal confidence coefficients. The confidence inter-
val length of the new procedures is a increasing function of total censored number of sam-
ple r+s for any given m and P∗, a decreasing function of m for any given r, s and P∗a nd
a increasing function of P∗ for any given n, r and s. The confidence interval length of the
new one-stage multiple comparison procedures with a control over the old ones is reduced
from 66% to 67.6% under (σ1, σ2, σ3, σ4) = (1.0,1.0,1.0,1.0) and from 55.2% to 55.7% under
(σ1, σ2, σ3, σ4) = (1.0,2.0,3.0,4.0). The reduction increases when the scale parameters are
more dispersed. From this table, the proposed new procedures have shorter confidence length
with coverage probability closer to the nominal confidence coefficients. It’s also found that the
coverage probability is a increasing function of r+s for any given m and P∗ and a decreasing
function ofm for any given r, s and P∗.

4. Example

The duration of remission for four drugs as the treatment of leukemia in Wu and Wu (2005)
is used to illustrate our proposed new one-stage multiple comparison procedures with a con-
trol given in Theorem 2 based on doubly censored sample. Twenty patients are receiving one
of the four drugs and the duration of remission are recorded (See the raw data in Wu and
Wu (2005)). The longer guarantee duration of remission time (location parameter of two-
parameter exponential distribution) is desired for this example. The likelihood ratio asymp-
totic χ 2 test (Lawless (2003)) had shown a significant difference among the scale parameters
of four exponential distributions. Consider the doubly censoring schemes of (r,s) = (1,1),
(1,2), (2,1). Applying Theorem 2, the required statistics and critical values of s∗U , s∗L and s∗t for
P∗ = 0.90, 095 are summarized in Table 3.

Using parts (a) and (b) of Theorem 2, we can obtain the one-sample one-sided confidence
bounds with confidence coefficients 0.90 and 0.95 given in Table 4. From Table 4, drugs 1, 2

Table . The required statistics and critical values s∗U , s
∗
L and s

∗
t for P

∗ = 0.90, 095.

(r,s) Statistics Drug Drug Drug Drug P∗ s∗U s∗L s∗t

(,) Yi . . . . . . . .
Si . . . . . . . .
ci . . .
c∗i . . .
Yi-Y − . − . − .

(,) Yi . . . . . . . .
Si . . . . . . . .
ci . . .
c∗i . . .
Yi-Y − . − . − .

(,) Yi . . . . . . . .
Si . . . . . . . .
ci . . .
c∗i . . .
Yi-Y − . − . − .
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Table . The % and % one-sided confidence intervals for three drugs compared with the control drug
(drug ).

(−∞,Yi − Yk + c∗i s
∗
U),(Yi − Yk − cis

∗
L ,∞)

P∗ (r,s) θ1 − θ4 θ2 − θ4 θ3 − θ4

% (,) (−∞,−.), (−.,∞) (−∞,−.),(−.,∞) (−∞,−.), (−.,∞)
(,) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞) (−∞,.), (−.,∞)
(,) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞)

% (,) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞)
(,) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞) (−∞,.), (−.,∞)
(,) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞) (−∞,−.), (−.,∞)

Table . The % and % two-sided confidence intervals for three drugs compared with the control drug
(drug ).

(Yi − Yk − cis
∗
t ,Yi − Yk + c∗i s

∗
t )

P∗ (r,s) θ1 − θ4 θ2 − θ4 θ3 − θ4 L1 L3 L3/L1

% (,) (−.,−.) (−.,−.) (−.,.) . . .
(,) (−.,−.) (−.,−.) (−., .) . . .
(,) (−.,−.) (−.,−.) (−., .) . . .

% (,) (−.,−.) (−.,−.) (−., .) . . .
(,) (−.,−.) (−., .) (−., .) . . .
(,) (−.,−.) (−.,−.) (−., .) . . .

are selected in aworse than the control (drug 4) subset with the probability of correct selection
being at least 0.90 and 0.95 the corresponding upper confidence bounds are less than zero. For
drug 3, it is selected in a worse than the control subset for (r,s) = (1,1), (1,2) with P∗ = 0.90
and for (r,s) = (1,1),(1,2) with P∗ = 0.95. We can conclude that drug 3 is is not significantly
different from drug 4 for (r,s) = (2,1) with P∗ = 0.90 and for (r,s) = (2,1) with P∗ = 0.95.

Using parts (c) of Theorem 2, we can obtain the two-sided confidence bounds with con-
fidence coefficients 0.90 and 0.95 given in Table 5. Since the upper limits of all simultaneous
two-sided confidence intervals are less than zero, drugs 1, 2 are worse than drug 4 (the control
population) for all censoring schemes except the case of (r,s) = (2,1) with confidence coeffi-
cients 0.95.However, drugs 3 is not significantly different fromdrug 4 for all cases of censoring
with confidence coefficients 0.90 and 0.95. Furthermore, L3 = (

...c + c̄)s∗t is increasing when
r is increasing for given s and P∗ or when s is decreasing for given r and P∗ or when P∗ is
increasing for given r and s.

5. Conclusion

In practical world, the experimenters or researcher would like to conduct a multiple compar-
ison procedure for comparing several treatments simultaneously with a control or standard
treatment. For comparing the location parameters of exponential distributions when scale
parameters are unequal and unknown, the two-stage procedures proposed by Lam and Ng
(1990) can be employed to resolve this problem. However, the two-stage multiple compari-
son procedure with a control requires additional samples at the second stage, which can be
large due to heterogeneous variances. The additional sample at the second stage may not
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be collected because there may be an early termination due to time limitation and bud-
getary reasons in an experiment. In this situation, a one-sample multiple comparison pro-
cedure with a control is a good remedy for two-stage procedure when the second stage sam-
ple is not available. In this paper, we proposed the multiple comparison procedures with a
control in Theorem 2 for doubly censored samples under heteroscedasticity. The simula-
tion results show that the proposed methods have shorter confidence length with coverage
probability closer to the nominal ones. Therefore, the proposed methods are recommended
for the use for experimenters to make the multiple comparison procedures with the con-
trol for the location parameters of exponential distributions based on the doubly censored
samples.
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